

CASE STUDY

PRECISION IN ACTION: MAJOR TELECOMMUNICATIONS COMPANY LEVERAGES TRYSTAR'S TECHNOLOGY FOR DATA CENTER RESILIENCE

<u>BACKGROUND</u>

The main purpose of a data center is the safe storage and continuous accessibility of data. Uptime is non-negotiable. Every routine maintenance task must be executed with precision. Any disruption can lead to substantial financial losses and damage to a company's reputation.

To ensure upkeep of the infrastructure, rigorous and scheduled testing occurs on a recurring basis. This includes testing of the most complex electrical components to basic protection systems that are present among even low-tech commercial buildings.

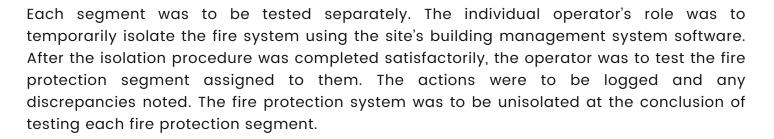
This case study highlights the critical role that <u>Trystar's Sequence of Events Recorder</u> (SER) played in safeguarding operations at the client data center during a potential crisis.

<u>THE CHALLENGE:</u>

<u>COMPLEX DATA CENTER OPERATIONS</u>

According to Uptime Institute's 2023 outage analysis report, 40% incidents are due to human errors in following processes. This is one such example.

The customer was performing routine fire protection system maintenance. The scope of this fire protection system testing incorporated all fire protection components in the data center.


As per defined Standard Operating Procedures (SOPs), maintenance was to be segmented into separate fire protection regions of the data center.

CLIENT OVERVIEW

- \$50B+ revenue
- 100,000+ employees
- 30 million+ customers
- 25,000 sq ft data hall (server racks, people spaces in between racks, and perimeter)

TRYSTAR

At the conclusion of the testing, the server rack average air temperature in one data hall reached over 90F. The extended high temperature over time caused a protective feature to engage and caused a temporary outage.

-,,,	Monitoring +	Control	 Diagnostics - 	Setup -				
onitoring - Status								
Channel Name 1 UPS 1 + MBC - BIB Position	Status Closed	17	Channel Name UPS 1 - Static Bypass	Status	81	Channel Name Generator 1 (CAT3512B)	Status	
2 UPS 1 + MBC - BIB Trip	Normal	17	UPS 1 - State Bypass UPS 1 - Battery Status	Open	P11 R2	Output 02	Engine Stop	
2 UPS 1 + MBC - BIB LSI 3 UPS 1 + MBC - BIB LSI	Normal	18	UPS 1 - Banery Status UPS 1- Temperature	Normal	P52	Output 02 Output 03		
4 UPS 1 + MBC - MIB Position	Closed	20		Normal	R4	Output 04	on	The event recorder
5 UPS 1 + MBC - MIB Trip	Normal	21	UPS 1 - Voltage Alarm	Normal	R5	Output 05	01	
6 UPS 1 + MBC - MIB LSI	Normal	22	UPS 1 - Rectifier Current		Pi6	Output 06	01	is used for figuring out wh
7 UPS 1 + MBC - MBB Position	Ciosed	23	UPS 1 - Power Supply	Normal	87	Output 07	01	is used for inguiling out will
UPS 1 + MBC - MBB Trip	Normal	24	UPS 1 - Fan	Normal	R8	Output 08	Out	the truth really is Mayon
UPS 1 + MBC - MBC LSI	Normal	25	UPS 1 - Summary Alarm	Normal				the truth really is. We use
UPS 1 + MBC - OUT CB1 Position	Open	26	UPS 1 - EPO	01				to per unbette truce and unb
UPS 1 + MBC - OUT CB1 Trip	Normal	27	UPS 1 - Door	Closed				to see what's true and wh
UPS 1 + MBC - OUT CB1 LSI	Normal	28	Input 28	01				
UPS 1 + MBC - OUT CB2 Position	Open	29	Input 29	□ o#				is false. It's the 'cheat cod
UPS 1 + MBC - OUT CB2 Trip	Normal	30		_ or				
5 UPS 1 + MBC - OUT CB2 LSI	Normal	31	Input 31	01				for our facility.
5 Input 16	01	32	Input 32	_ or				
atus: Channels:							🔵 DATA	
= Off /= Inverted 1 2 3 4 5 6 7 8		9 10 11 12 13 14 15 16		17 18 19 20 21 22 23 24		25 26 27 28 29 30 31 32	R1 R2 R3 R4 R5 R6 R7 R8	
• On • Forced				00000000			00000000	
© Copyright 2009-2023. Cyber Sciences, LLC.	All rights reserved.							

SOLUTION & BENEFITS

The customer needed a precise and rapid diagnosis to understand the root cause and mitigate the impact. This is where <u>Trystar's SER</u> came in, providing the critical insights needed to resolve the issue and prevent future occurrences. The lead engineer during this outage immediately consulted the Event Log (each event is given a time stamp to the millisecond) to know what happened and in what precise order, as quickly as possible.

Three important pieces of information were gathered for post-event analysis: what fire protection segment was left unisolated when testing began, exactly when the affected data hall air handling units were secured, and, most importantly, how long average rack temperatures in the affected data hall were elevated over 90F.

In conclusion, the temperature-over-time metric was crucial because it meant avoiding the replacement of damaged servers since tolerance time wasn't exceeded. The time from downtime to uptime was markedly shorter due to the availability of accurate and relevant data gathered by the Sequence of Events Recorder. A cheat code indeed!